
2023-24 MATH2048: Honours Linear Algebra II

Homework 3

Due: 2023-09-29 (Friday) 23:59

For the following homework questions, please give reasons in your solutions.

Scan your solutions and submit it via the Blackboard system before due date.

1. Prove that there exists a linear transformation T : R2 → R3 such that T (1, 1) =

(1, 0, 2) and T (2, 3) = (1,−1, 4). What is T (8, 11)?

Proof. Linear transformations in vector spaces are determined by their action on a

basis. Consider the vectors (1, 1) and (2, 3). They are linearly independent because

no scalar multiple of one is equal to the other. Then {(1, 1), (2, 3)} is a basis for R2.

Now, we can define a linear transformation T by its action on these vectors.

We have T (1, 1) = (1, 0, 2) and T (2, 3) = (1,−1, 4). Note that (8, 11) = 2(1, 1) +

3(2, 3), so T (8, 11) = 2T (1, 1) + 3T (2, 3) = 2(1, 0, 2) + 3(1,−1, 4) = (5,−3, 16).

2. Let V be a finite-dimensional vector space and T : V → V be linear.

(a) Suppose that V = R(T ) +N(T ). Prove that V = R(T )⊕N(T ).

(b) Suppose that R(T ) ∩N(T ) = {0}. Prove that V = R(T )⊕N(T ).

(c) Give an example of V and T such that V = R(T )⊕N(T ).

Be careful to say in part (a)(b) where finite-dimensionality is used.

Proof. Because dim(V ) is finite, by Rank-Nullity Theorem, dim(V ) = dim(R(T )) +

dim(N(T )) = dim(R(T ) +N(T ))− dim(R(T ) ∩N(T )). Then

V = R(T ) +N(T ) ⇐⇒ dim(V ) = dim(R(T ) +N(T )),

⇐⇒ dim(R(T ) ∩N(T )) = 0,

⇐⇒ R(T ) ∩N(T ) = 0.
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Hence,

V = R(T ) +N(T ) ⇐⇒ R(T ) ∩N(T ) = 0 ⇐⇒ V = R(T )⊕N(T ).

This proves (a) and (b).

(c) Consider the vector space V = R2 and the linear transformation T : V → V

defined by T (x, y) = (x, 0).

In this case, the range of T is R(T ) = {(x, 0) : x ∈ R} and the null space is

N(T ) = {(0, y) : y ∈ R}. It’s easy to see that V = R2 = R(T )⊕N(T ).

3. Let V be an n-dimensional vector space with an ordered basis β. Define T : V → Fn

by T (x) = [x]β. Prove that T is linear.

Proof. Denote the ordered basis β of V as β = {v1, v2, . . . , vn}.

For any two vectors u, v ∈ V , we can write them as u =
∑n

i=1 aivi and v =
∑n

i=1 bivi

for some scalars ai, bi ∈ F . For any scalar c ∈ F , the sum u+ cv =
∑n

i=1(ai + cbi)vi.

By the definition of T , we have T (u) = [u]β = (a1, a2, ..., an)T and T (v) = [v]β =

(b1, b2, ..., bn)T .

Then T (u) + cT (v) = (a1 + cb1, a2 + cb2, ..., an + cbn)T = [u+ cv]β = T (u+ cv).

Therefore, T is a linear transformation.

4. Let V be a vector space with the ordered basis β = {v1, v2, ..., vn}. Define v0 = 0.

By Theorem 2.6 (p. 72), there exists a linear transformation T : V → V such that

T (vj) = vj + vj−1 for j = 1, 2, ..., n. Compute [T ]β.

Proof. The image of each vector vj under T is T (vj) = vj + vj−1, which translates

to two 1’s in the j-th and (j − 1)-th positions in the column vector [T (vj)]β, except

for j = 1 where [T (v1)]β = (1, 0, ..., 0)T .

Therefore, the matrix representation [T ]β is:

[T ]β =



1 1 0 · · · 0

0 1 1 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
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5. Let V and W be vector spaces such that dim(V ) = dim(W ), and let T : V →W be

linear. Show that there exist ordered bases β and γ for V and W , respectively, such

that [T ]γβ is a diagonal matrix.

Proof. Let n denote the common dimension of V and W . Let {v1, v2, . . . , vk} be a

basis for the null space N(T ) of T , and extend this basis to β = {v1, . . . , vn}, a basis

for V .

As per the Rank-Nullity theorem, we know that the vectors {T (vk+1), . . . , T (vn)}

form a basis for the range R(T ) of T . We can extend this basis to form a basis

γ = {w1, . . . , wk, T (vk+1), . . . , T (vn)} for W .

Now, for 1 ≤ i ≤ k, the image [T (vi)]γ is the zero vector in Fn, since vi ∈ N(T ).

For k < i ≤ n, however, T (vi) is a basis vector in R(T ), and therefore [T (vi)]γ is the

column vector with a single 1 at the i-th row and 0’s elsewhere.

Therefore, the matrix representation [T ]γβ is a diagonal matrix with 1’s correspond-

ing to the vectors in R(T ) and 0’s corresponding to the vectors in N(T ):

[T ]γβ =



0 · · · 0 · · · 0
...

. . .
... · · ·

...

0 · · · 1 · · · 0
... · · ·

...
. . .

...

0 · · · 0 · · · 1
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