2023-24 MATH2048: Honours Linear Algebra II Homework 3

Due: 2023-09-29 (Friday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date.

1. Prove that there exists a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ such that T(1,1) = (1,0,2) and T(2,3) = (1,-1,4). What is T(8,11)?

Proof. Linear transformations in vector spaces are determined by their action on a basis. Consider the vectors (1, 1) and (2, 3). They are linearly independent because no scalar multiple of one is equal to the other. Then $\{(1, 1), (2, 3)\}$ is a basis for \mathbb{R}^2 . Now, we can define a linear transformation T by its action on these vectors.

We have T(1,1) = (1,0,2) and T(2,3) = (1,-1,4). Note that (8,11) = 2(1,1) + 3(2,3), so T(8,11) = 2T(1,1) + 3T(2,3) = 2(1,0,2) + 3(1,-1,4) = (5,-3,16). \Box

- 2. Let V be a finite-dimensional vector space and $T: V \to V$ be linear.
 - (a) Suppose that V = R(T) + N(T). Prove that $V = R(T) \oplus N(T)$.
 - (b) Suppose that $R(T) \cap N(T) = \{0\}$. Prove that $V = R(T) \oplus N(T)$.
 - (c) Give an example of V and T such that $V = R(T) \oplus N(T)$.

Be careful to say in part (a)(b) where finite-dimensionality is used.

Proof. Because dim(V) is finite, by Rank-Nullity Theorem, dim(V) = dim(R(T)) + dim(N(T)) = dim(R(T) + N(T)) - dim($R(T) \cap N(T)$). Then

$$V = R(T) + N(T) \iff \dim(V) = \dim(R(T) + N(T)),$$
$$\iff \dim(R(T) \cap N(T)) = 0,$$
$$\iff R(T) \cap N(T) = 0.$$

Hence,

$$V = R(T) + N(T) \iff R(T) \cap N(T) = 0 \iff V = R(T) \oplus N(T).$$

This proves (a) and (b).

(c) Consider the vector space $V = \mathbb{R}^2$ and the linear transformation $T: V \to V$ defined by T(x, y) = (x, 0).

In this case, the range of T is $R(T) = \{(x,0) : x \in \mathbb{R}\}$ and the null space is $N(T) = \{(0, y) : y \in \mathbb{R}\}$. It's easy to see that $V = \mathbb{R}^2 = R(T) \oplus N(T)$.

3. Let V be an n-dimensional vector space with an ordered basis β . Define $T: V \to F^n$ by $T(x) = [x]_{\beta}$. Prove that T is linear.

Proof. Denote the ordered basis β of V as $\beta = \{v_1, v_2, \dots, v_n\}$.

For any two vectors $u, v \in V$, we can write them as $u = \sum_{i=1}^{n} a_i v_i$ and $v = \sum_{i=1}^{n} b_i v_i$ for some scalars $a_i, b_i \in F$. For any scalar $c \in F$, the sum $u + cv = \sum_{i=1}^n (a_i + cb_i)v_i$. By the definition of T, we have $T(u) = [u]_{\beta} = (a_1, a_2, ..., a_n)^T$ and $T(v) = [v]_{\beta} =$ $(b_1, b_2, ..., b_n)^T$.

Then
$$T(u) + cT(v) = (a_1 + cb_1, a_2 + cb_2, ..., a_n + cb_n)^T = [u + cv]_\beta = T(u + cv).$$

Therefore, T is a linear transformation.

Therefore, T is a linear transformation.

4. Let V be a vector space with the ordered basis $\beta = \{v_1, v_2, ..., v_n\}$. Define $v_0 = 0$. By Theorem 2.6 (p. 72), there exists a linear transformation $T: V \to V$ such that $T(v_j) = v_j + v_{j-1}$ for j = 1, 2, ..., n. Compute $[T]_{\beta}$.

Proof. The image of each vector v_j under T is $T(v_j) = v_j + v_{j-1}$, which translates to two 1's in the *j*-th and (j-1)-th positions in the column vector $[T(v_j)]\beta$, except for j = 1 where $[T(v_1)]\beta = (1, 0, ..., 0)^T$.

Therefore, the matrix representation $[T]_{\beta}$ is:

$$[T]_{\beta} = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

5. Let V and W be vector spaces such that dim(V) = dim(W), and let T : V → W be linear. Show that there exist ordered bases β and γ for V and W, respectively, such that [T]^γ_β is a diagonal matrix.

Proof. Let n denote the common dimension of V and W. Let $\{v_1, v_2, \ldots, v_k\}$ be a basis for the null space N(T) of T, and extend this basis to $\beta = \{v_1, \ldots, v_n\}$, a basis for V.

As per the Rank-Nullity theorem, we know that the vectors $\{T(v_{k+1}), \ldots, T(v_n)\}$ form a basis for the range R(T) of T. We can extend this basis to form a basis $\gamma = \{w_1, \ldots, w_k, T(v_{k+1}), \ldots, T(v_n)\}$ for W.

Now, for $1 \leq i \leq k$, the image $[T(v_i)]_{\gamma}$ is the zero vector in F^n , since $v_i \in N(T)$. For $k < i \leq n$, however, $T(v_i)$ is a basis vector in R(T), and therefore $[T(v_i)]_{\gamma}$ is the column vector with a single 1 at the *i*-th row and 0's elsewhere.

Therefore, the matrix representation $[T]_{\gamma\beta}$ is a diagonal matrix with 1's corresponding to the vectors in R(T) and 0's corresponding to the vectors in N(T):

$$[T]_{\gamma\beta} = \begin{pmatrix} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \cdots & \vdots \\ 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \cdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 1 \end{pmatrix}$$

 г	-	٦