2023-24 MATH2048: Honours Linear Algebra II Homework 3

Due: 2023-09-29 (Friday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date.

1. Prove that there exists a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ such that $T(1,1)=$ $(1,0,2)$ and $T(2,3)=(1,-1,4)$. What is $T(8,11)$?

Proof. Linear transformations in vector spaces are determined by their action on a basis. Consider the vectors $(1,1)$ and $(2,3)$. They are linearly independent because no scalar multiple of one is equal to the other. Then $\{(1,1),(2,3)\}$ is a basis for \mathbb{R}^{2}. Now, we can define a linear transformation T by its action on these vectors.

We have $T(1,1)=(1,0,2)$ and $T(2,3)=(1,-1,4)$. Note that $(8,11)=2(1,1)+$ $3(2,3)$, so $T(8,11)=2 T(1,1)+3 T(2,3)=2(1,0,2)+3(1,-1,4)=(5,-3,16)$.
2. Let V be a finite-dimensional vector space and $T: V \rightarrow V$ be linear.
(a) Suppose that $V=R(T)+N(T)$. Prove that $V=R(T) \oplus N(T)$.
(b) Suppose that $R(T) \cap N(T)=\{0\}$. Prove that $V=R(T) \oplus N(T)$.
(c) Give an example of V and T such that $V=R(T) \oplus N(T)$.

Be careful to say in part (a)(b) where finite-dimensionality is used.

Proof. Because $\operatorname{dim}(V)$ is finite, by Rank-Nullity Theorem, $\operatorname{dim}(V)=\operatorname{dim}(R(T))+$ $\operatorname{dim}(N(T))=\operatorname{dim}(R(T)+N(T))-\operatorname{dim}(R(T) \cap N(T))$. Then

$$
\begin{aligned}
V=R(T)+N(T) & \Longleftrightarrow \operatorname{dim}(V)=\operatorname{dim}(R(T)+N(T)), \\
& \Longleftrightarrow \operatorname{dim}(R(T) \cap N(T))=0, \\
& \Longleftrightarrow R(T) \cap N(T)=0 .
\end{aligned}
$$

Hence,

$$
V=R(T)+N(T) \Longleftrightarrow R(T) \cap N(T)=0 \Longleftrightarrow V=R(T) \oplus N(T)
$$

This proves (a) and (b).
(c) Consider the vector space $V=\mathbb{R}^{2}$ and the linear transformation $T: V \rightarrow V$ defined by $T(x, y)=(x, 0)$.

In this case, the range of T is $R(T)=\{(x, 0): x \in \mathbb{R}\}$ and the null space is $N(T)=\{(0, y): y \in \mathbb{R}\}$. It's easy to see that $V=\mathbb{R}^{2}=R(T) \oplus N(T)$.
3. Let V be an n-dimensional vector space with an ordered basis β. Define $T: V \rightarrow F^{n}$ by $T(x)=[x]_{\beta}$. Prove that T is linear.

Proof. Denote the ordered basis β of V as $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
For any two vectors $u, v \in V$, we can write them as $u=\sum_{i=1}^{n} a_{i} v_{i}$ and $v=\sum_{i=1}^{n} b_{i} v_{i}$ for some scalars $a_{i}, b_{i} \in F$. For any scalar $c \in F$, the sum $u+c v=\sum_{i=1}^{n}\left(a_{i}+c b_{i}\right) v_{i}$. By the definition of T, we have $T(u)=[u]_{\beta}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{T}$ and $T(v)=[v]_{\beta}=$ $\left(b_{1}, b_{2}, \ldots, b_{n}\right)^{T}$.

Then $T(u)+c T(v)=\left(a_{1}+c b_{1}, a_{2}+c b_{2}, \ldots, a_{n}+c b_{n}\right)^{T}=[u+c v]_{\beta}=T(u+c v)$.
Therefore, T is a linear transformation.
4. Let V be a vector space with the ordered basis $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Define $v_{0}=0$. By Theorem 2.6 (p. 72), there exists a linear transformation $T: V \rightarrow V$ such that $T\left(v_{j}\right)=v_{j}+v_{j-1}$ for $j=1,2, \ldots, n$. Compute $[T]_{\beta}$.

Proof. The image of each vector v_{j} under T is $T\left(v_{j}\right)=v_{j}+v_{j-1}$, which translates to two 1 's in the j-th and $(j-1)$-th positions in the column vector $\left[T\left(v_{j}\right)\right] \beta$, except for $j=1$ where $\left[T\left(v_{1}\right)\right] \beta=(1,0, \ldots, 0)^{T}$.

Therefore, the matrix representation $[T]_{\beta}$ is:

$$
[T]_{\beta}=\left(\begin{array}{ccccc}
1 & 1 & 0 & \cdots & 0 \\
0 & 1 & 1 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)
$$

5. Let V and W be vector spaces such that $\operatorname{dim}(V)=\operatorname{dim}(W)$, and let $T: V \rightarrow W$ be linear. Show that there exist ordered bases β and γ for V and W, respectively, such that $[T]_{\beta}^{\gamma}$ is a diagonal matrix.

Proof. Let n denote the common dimension of V and W. Let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a basis for the null space $N(T)$ of T, and extend this basis to $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$, a basis for V.

As per the Rank-Nullity theorem, we know that the vectors $\left\{T\left(v_{k+1}\right), \ldots, T\left(v_{n}\right)\right\}$ form a basis for the range $R(T)$ of T. We can extend this basis to form a basis $\gamma=\left\{w_{1}, \ldots, w_{k}, T\left(v_{k+1}\right), \ldots, T\left(v_{n}\right)\right\}$ for W.

Now, for $1 \leq i \leq k$, the image $\left[T\left(v_{i}\right)\right]_{\gamma}$ is the zero vector in F^{n}, since $v_{i} \in N(T)$. For $k<i \leq n$, however, $T\left(v_{i}\right)$ is a basis vector in $R(T)$, and therefore $\left[T\left(v_{i}\right)\right]_{\gamma}$ is the column vector with a single 1 at the i-th row and 0 's elsewhere.

Therefore, the matrix representation $[T]_{\gamma \beta}$ is a diagonal matrix with 1's corresponding to the vectors in $R(T)$ and 0's corresponding to the vectors in $N(T)$:

$$
[T]_{\gamma \beta}=\left(\begin{array}{ccccc}
0 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \cdots & \vdots \\
0 & \cdots & 1 & \cdots & 0 \\
\vdots & \cdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & 1
\end{array}\right)
$$

